Why symbols at all? Because a clean headline without a confidence trace is not enough. SSMS gives you compact tags that travel with results, so every 0over0 decision is both readable and auditable.
0A) SSMS Alignment Symbols (ASCII legend)
Scalar-to-tag mapping (bands).
Always report the numeric alignment once in DIV[a_div] and tag both the CLASS and DIV parts with the same band.
if a >= +0.90 -> A++
if +0.20 <= a < +0.90 -> A+
if -0.20 <= a < +0.20 -> A0
if -0.60 <= a < -0.20 -> A-
if a <= -0.60 -> A--
Direction tag (optional).DIR+, DIR0, DIR-
- finite results: DIR may reflect
sign(m)(optional; omit if not needed) - infinite results: DIR reflects
+infor-inf - zero-class: omit DIR (or use
DIR0if you prefer explicit neutrality)
Result class wrappers (how to print CLASS).
Put the band tag on the CLASS token; do not embed the numeric a here (the numeric lives in DIV[...]).
Zero-class: Z@A++ | Z@A+ | Z@A0 | Z@A- | Z@A--
Finite: VAL[m]@A++ | @A+ | @A0 | @A- | @A--
Infinity: INF+@A.. or INF-@A..
Division alignment (reminder).
Rapidity subtraction; clamp before any atanh.
a_div = tanh( atanh(a_f) - atanh(a_g) )
a := clamp(a, -1+eps_a, +1-eps_a) # recommended eps_a = 1e-6
print as: DIV[a_div] with its band tag
0B) Print Grammar, Flags, and Badges
One-liner template (division outcomes).
< m_out , a_div > -> SSMS: {CLASS}@{A-tag} DIV[a_div]@{A-tag} {DIR?} {REG?} {BADGES?}
Registry flags (REG=…).
Use to surface tricky shapes; non-exclusive.
SIDED # strong asymmetry around the point
OSC # oscillatory behavior across nested windows
MULTI # multiple stable regimes detected
NOFIT # local fits below quality floor
Badges (context cues).
EDGE(p) EDGE(q) # exponent-edge signals from the rate scan
STAB[%] # optional stability fraction for accepted windows
Minimal policy (practical).
- Include
REG=SIDEDorREG=OSCwhen detected; prefer to flag rather than silently flatten. - Print
DIR+orDIR-for infinite results; keep DIR optional for finite results. - Keep bands conservative; avoid saturating at
A++unless the evidence is overwhelming.
Examples (compact).
Zero: SSMS: Z@A0 DIV[0.00]@A0
Finite: SSMS: VAL[0.400]@A+ DIV[+0.714]@A+ DIR+
Infinity: SSMS: INF+@A-- DIV[-0.800]@A-- DIR+
Oscill.: SSMS: REG=OSC DIV[+0.05]@A0 EDGE(p) EDGE(q)
Manifest snippet (for reproducibility).
{ eps_a: 1e-6,
map: linear | contrast(c=1.0),
a_g_tier: 0.60 | 0.80 | 0.90,
bands: { A++: a>=0.90, A+: 0.20<=a<0.90, A0: -0.20<=a<0.20,
A-: -0.60<=a<-0.20, A--: a<=-0.60 } }
Navigation
Prev: P1 — SSM — Classifying 0over0 Limits (Primer 0)
Next: P3 — Why This Classification Matters (0C) & What This Unlocks (0D)