Classifying 0/0 Limits — SSMS — Alignment Symbols & Print Grammar (0A, 0B)

Why symbols at all? Because a clean headline without a confidence trace is not enough. SSMS gives you compact tags that travel with results, so every 0over0 decision is both readable and auditable.


0A) SSMS Alignment Symbols (ASCII legend)

Scalar-to-tag mapping (bands).
Always report the numeric alignment once in DIV[a_div] and tag both the CLASS and DIV parts with the same band.

if a >= +0.90           -> A++
if +0.20 <= a < +0.90   -> A+
if -0.20 <= a < +0.20   -> A0
if -0.60 <= a < -0.20   -> A-
if a <= -0.60           -> A--

Direction tag (optional).
DIR+, DIR0, DIR-

  • finite results: DIR may reflect sign(m) (optional; omit if not needed)
  • infinite results: DIR reflects +inf or -inf
  • zero-class: omit DIR (or use DIR0 if you prefer explicit neutrality)

Result class wrappers (how to print CLASS).
Put the band tag on the CLASS token; do not embed the numeric a here (the numeric lives in DIV[...]).

Zero-class:  Z@A++ | Z@A+ | Z@A0 | Z@A- | Z@A--
Finite:      VAL[m]@A++ | @A+ | @A0 | @A- | @A--
Infinity:    INF+@A..  or  INF-@A..

Division alignment (reminder).
Rapidity subtraction; clamp before any atanh.

a_div = tanh( atanh(a_f) - atanh(a_g) )
a := clamp(a, -1+eps_a, +1-eps_a)   # recommended eps_a = 1e-6
print as: DIV[a_div] with its band tag


0B) Print Grammar, Flags, and Badges

One-liner template (division outcomes).

< m_out , a_div >  ->  SSMS: {CLASS}@{A-tag}  DIV[a_div]@{A-tag}  {DIR?}  {REG?}  {BADGES?}

Registry flags (REG=…).
Use to surface tricky shapes; non-exclusive.

SIDED   # strong asymmetry around the point
OSC     # oscillatory behavior across nested windows
MULTI   # multiple stable regimes detected
NOFIT   # local fits below quality floor

Badges (context cues).

EDGE(p) EDGE(q)  # exponent-edge signals from the rate scan
STAB[%]         # optional stability fraction for accepted windows

Minimal policy (practical).

  • Include REG=SIDED or REG=OSC when detected; prefer to flag rather than silently flatten.
  • Print DIR+ or DIR- for infinite results; keep DIR optional for finite results.
  • Keep bands conservative; avoid saturating at A++ unless the evidence is overwhelming.

Examples (compact).

Zero:     SSMS: Z@A0          DIV[0.00]@A0
Finite:   SSMS: VAL[0.400]@A+ DIV[+0.714]@A+ DIR+
Infinity: SSMS: INF+@A--      DIV[-0.800]@A-- DIR+
Oscill.:  SSMS: REG=OSC       DIV[+0.05]@A0 EDGE(p) EDGE(q)

Manifest snippet (for reproducibility).

{ eps_a: 1e-6,
  map: linear | contrast(c=1.0),
  a_g_tier: 0.60 | 0.80 | 0.90,
  bands: { A++: a>=0.90, A+: 0.20<=a<0.90, A0: -0.20<=a<0.20,
           A-: -0.60<=a<-0.20, A--: a<=-0.60 } }


Navigation
Prev: P1 — SSM — Classifying 0over0 Limits (Primer 0)
Next: P3 — Why This Classification Matters (0C) & What This Unlocks (0D)