Classifying 0/0 Limits — SSM/SSMS Concept (minimal) (3)

Symbolic numeral.

x := < m , a >
m : classical magnitude (extended reals allowed: 0, finite, +inf, -inf)
a in (-1, +1) : alignment (metadata; composed via rapidities)

Alignment rapidity (with clamp).

a := clamp(a, -1 + eps_a, +1 - eps_a)
u := atanh(a)
recommended: eps_a = 1e-6

Alignment composition (many causes).

a := tanh( sum_i atanh(a_i) )

Division alignment (quotient).

a_div := tanh( atanh(a_f) - atanh(a_g) )

Interpretation of alignment a (metadata only).

  • a ~ +1 -> highly centered / stable / clean
  • a ~ 0 -> neutral / unknown quality
  • a ~ -1 -> strongly off-center / unstable

(Alignment never alters the classical magnitude after collapse: phi(<m,a>) = m.)

Why tanh/atanh?

  • keeps a bounded in (-1, +1)
  • turns composition into addition in rapidity space (stable, symmetric)
  • subtraction in rapidity naturally models division: a_div := tanh( atanh(a_f) - atanh(a_g) )

Default mappings (practical).

From R2 in [0,1]:
  linear map (default): a := 2*R2 - 1
  contrast map (when R2 clusters near 0 or 1): a := tanh( c*(R2 - 0.5) )
    with c in [0.5, 2.0], default c = 1.0  # publish c
  micro-calibration (3-point): choose low/med/high R2 exemplars;
    target bands ~ A- (~-0.6), A0 (~0.0), A+ (~+0.6); record in manifest
Reference channel default (e.g., time): a_g := +0.80  # avoid saturation at +1.0; then clamp

Tiny manifest to publish with results (example).

{ eps_a: 1e-6,
  map: linear | contrast(c=1.0),
  calibration: { targets: {A-: -0.6, A0: 0.0, A+: +0.6} },
  a_g_default: 0.80,
  bands: { A++: a>=0.90, A+: 0.60<=a<0.90, A0: -0.20<=a<0.20,
           A-: -0.60<=a<-0.20, A--: a<=-0.60 } }


Navigation
Prev: Classical Context & Gap Addressed (2)
Next: Formal Specification — 0/0 Rate Law (4)