Assumptions near x0 (power models).
f(x) ~ c_f * |x - x0|^(p_f)
g(x) ~ c_g * |x - x0|^(p_g) # finite nonzero c_f, c_g
- For the 0/0 case: require
p_f > 0andp_g > 0(both vanish atx0). - The rule below also classifies non-0/0 ratios when one of
p_f,p_gis0(not the focus here).
Rule (magnitude + alignment).
a_div := tanh( atanh(a_f) - atanh(a_g) )
if p_f > p_g -> < 0 , a_div >
if p_f = p_g -> < c_f / c_g , a_div >
if p_f < p_g -> < s * inf , a_div > where s := sign(c_f / c_g)
Safety (alignment clamp).
# clamp before any atanh
a := clamp(a, -1 + eps_a, +1 - eps_a) # default eps_a = 1e-6
Conservativity (collapse).
phi(< m , a >) = m
This reproduces the classical dominant-term outcome (0, finite constant, or +/-inf).
Proposition (rate law, power models).
If f(x) ~ c_f * |x - x0|^(p_f), g(x) ~ c_g * |x - x0|^(p_g), with c_f != 0, c_g != 0 and p_f, p_g >= 0, then as x -> x0:
if p_f > p_g -> f/g -> 0
if p_f = p_g -> f/g -> c_f / c_g
if p_f < p_g -> |f/g| -> +inf with sign sign(c_f / c_g)
Proof (sketch).
f/g = (c_f / c_g) * |x - x0|^(p_f - p_g)
case p_f - p_g:
> 0 -> |x-x0|^(positive) -> 0
= 0 -> constant ratio -> c_f/c_g
< 0 -> |x-x0|^(negative) -> +inf ; sign from c_f/c_g
QED
Notes.
- Sidedness. If the original functions include odd factors of
(x - x0)(suppressed by|.|in the model), one-sided signs can differ; report withSIDED(L/R)when detected. - Degenerates. If a leading coefficient vanishes on estimation (
c_f = 0orc_g = 0), promote to the next nonzero term or markNOFIT / MULTIper QA rules. - Alignment independence. The magnitude class is determined solely by the rate exponents (and sign via
c_f/c_g); alignment only records approach/quality and composes via rapidities.
Navigation
Prev: SSM/SSMS Concept (minimal) (3)
Next: Extended Asymptotics (log modifiers) (4A)