2.5 Acceptance bench (stacked + multistart, v1.1)
Four-cycle human/astro set (tested)
python ssm_clock_longbench_v2.py ^
--period_sets "1,7,29.5306,365.2422" ^
--seeds 200 ^
--noise_list "2,6" ^
--grid_step_min 2.0 ^
--alpha_kz 0.0 ^
--stack 5 --stack_dt_days 0.5 ^
--multistart_k 7 --refine brent --refine_steps 80 --bracket_mult 2
PASS gate
error <= 28.8 min with pass_rate >= 95% across >= 200 seeds
v1.1 defaults
grid 2 min, stack 5, delta 0.5 d (12 h), K=7, refine brent
Outputs
notes/longbench_summary.csv # one row per set x noise
notes/lb_cfg_*.json # per-seed configs (synthetic)
notes/lb_obs_*.csv # per-seed observed phases
2.6 “Thousands of years” stability checks (synthetic)
Why synthetic. Ephemeris-free; we validate the inverse, not any astronomical model.
Method
- Draw
tau_trueuniformly from[0, T_search]for each seed. - Generate phases via the forward model + noise.
- Run the stacked + multistart inverse.
- Accumulate error modulo
T_search.
Interpretation. A uniform draw emulates sampling across many centuries because the symbolic surface repeats; stacking destroys long-horizon aliases.
Example (large seed sweep)
python ssm_clock_longbench_v2.py ^
--period_sets "1,7,29.5306,365.2422" ^
--seeds 2000 ^
--noise_list "2" ^
--grid_step_min 2.0 ^
--stack 5 --stack_dt_days 0.5 ^
--multistart_k 7 --refine brent --refine_steps 80 --bracket_mult 2
Result to expect. PASS-rate ~ 100%, mean error single-digit minutes for noise=2 deg.
Navigation
Back: SSM-Clock—Runner & Streaming Inverse (2.3–2.4)
Next: SSM-Clock—Formats, Determinism & Performance (2.7–2.9)