SSM-AI – Path Pooling & Reporting (5.2)

Fuse steps once, order-invariant; publish a single bounded path score

Purpose. Produce a single bounded, order-invariant, shard-safe path score while keeping m pristine via phi((m,a)) = m. Pool per-step RSIs in u-space and invert once.

Definition (fuse steps in u-space).

# clamp, map, pool, invert
u'_s := atanh( clamp(RSI'_s, -1+eps_a, +1-eps_a) )
U_path := SUM_s (w_s * u'_s)
W_path := SUM_s w_s
RSI_path := tanh( U_path / max(W_path, eps_w) )

Defaults: eps_a = 1e-6, eps_w = 1e-12. Weights w_s: uniform (1) for comparability, or strength-aware (|m_s|^gamma, gamma=1) — declare once in the manifest.

Streaming / branching.

# streaming extend
U_path += w_s * u'_s
W_path += w_s

# shard merge
U_path := SUM_k U_k
W_path := SUM_k W_k
RSI_path := tanh( U_path / max(W_path, eps_w) )

Compare branches by RSI_path (or RSI_plan_env if gating).

Plan gate (optional, alignment-only).

# mode "mul" (default)
RSI_plan_env := g_plan * RSI_path

# mode "u_scale"
RSI_plan_env := tanh( g_plan * atanh(RSI_path) )

Invariant: gate scales alignment only; never m.

Reporting (stamp-ready).

  • Log: U_path, W_path, RSI_path, band_path := to_band(RSI_path)
  • Optional: g_plan, RSI_plan_env, band_env
  • Stamp example: ...|U_path=1.187535|W_path=3|RSI_path=0.376388|band=A0|g_plan=0.80|RSI_env=0.301110|...

Worked numbers (calculator-fast; 6-dec).

u'_1 = 0.587535  (from RSI'_1 = 0.528120)
u'_2 = 0.400000  (from RSI'_2 = 0.379949)
u'_3 = 0.200000
U_path = 1.187535
W_path = 3
RSI_path = tanh(1.187535 / 3) = tanh(0.395845) = 0.376388  -> A0
g_plan = 0.800000 -> RSI_plan_env = 0.301110 -> A0

Rollback stack (Δ-based).

# push when adding a step
push(ΔU := w_s*u'_s, ΔW := w_s)

# rollback on breach
while RSI_path < band_min and stack not empty:
    ΔU, ΔW := pop()
    U_path -= ΔU
    W_path -= ΔW
    RSI_path := tanh( U_path / max(W_path, eps_w) )

Always recompute from (U_path, W_path); never mutate m.

Pseudocode (branch-safe).

class PathScore:
    def __init__(self, eps_a=1e-6, eps_w=1e-12):
        self.U = 0.0; self.W = 0.0
        self.eps_a = eps_a; self.eps_w = eps_w
        self.stack = []

    def add_step(self, RSI_used, beta=0.0, b_s=0.0, w=1.0):
        a = max(-1+self.eps_a, min(1-self.eps_a, RSI_used))
        u = atanh(a) + beta * b_s
        self.U += w * u; self.W += w
        self.stack.append((w * u, w))

    def undo_step(self):
        if not self.stack: return
        dU, dW = self.stack.pop()
        self.U -= dU; self.W -= dW

    def rsi_path(self):
        return 0.0 if self.W <= 0.0 else tanh(self.U / max(self.W, self.eps_w))

def pick_best_branch(branches, g_plan=1.0, mode="mul"):
    def env_rsi(ps):
        r = ps.rsi_path()
        return tanh(g_plan * atanh(r)) if mode == "u_scale" else g_plan * r
    return max(branches, key=lambda kv: env_rsi(kv[1]))[0]

Acceptance checklist (pass/fail).
Order invariance (permute steps): unchanged RSI_path within dtype epsilon
Shard invariance (sum (U,W)): matches single-pass result
Rollback correctness: Δ stack restores last-known-good
Boundedness: |RSI_path| < 1
Determinism: same inputs + manifest ⇒ identical outputs

One-line takeaway. Keep per-step contributions in u-space, track (U,W), and publish RSI_path := tanh(U/W) — a single, bounded, order-proof score for whole chains and plans, with phi((m,a)) = m guaranteeing classical values stay identical.


Navigation
Previous: SSM-AI – Step Scores & Priors in u-Space (5.1)
Next: SSM-AI – Failure Containment & Rollback (5.3)


Directory of Pages
SSM-AI — Table of Contents