SSM-AI – Appendix N — Economics & Rollout Worksheets (N4–N5)

Vendor delta analytics and weekly roll-up reducer for CFO and ops teams.

N4) Vendor delta worksheet (copy-paste; per service)

All *_pct columns are fractions in [0,1]; positive = savings vs baseline.
RSI_pool_env_delta := RSI_pool_env_A - RSI_pool_env_B.

svc	comparison	tokens_saved_pct	retry_drop_pct	latency_saved_pct	unit_cost_saved_pct	RSI_pool_env_delta	weekly_savings_usd
search	Vendor A vs B	0.0876	0.3	0.1014	0.1	0.151	182400
tools	Vendor A vs B	0.0957	0.3333	0.1026	0.1	0.157	96300

Formulas (illustrative):

RSI_pool_env_delta := RSI_pool_env_A - RSI_pool_env_B
weekly_savings_usd := savings_usd_A - savings_usd_B

Reference quantities (declare once per worksheet):

T_week := tokens_per_week_in_1k_units
P_ref := dollars_per_1k_tokens_baseline_or_blended
R_week := requests_or_tool_calls_per_week
C_tool := dollars_per_tool_or_API_call
C_ms := dollars_per_ms_latency   # optional, set 0 if not monetized
Spend_ref_week := baseline_weekly_AI_spend_for_this_service

Per-vendor decomposition:

savings_usd_i :=
    T_week * P_ref * tokens_saved_pct_i
  + R_week * C_tool * retry_drop_pct_i
  + R_week * C_ms * lat_saved_pct_i
  + Spend_ref_week * unit_cost_saved_pct_i

Guardrail (band parity).
Count savings_i only if RSI_pool_env_i >= band_min (e.g., A0).


N4.1) Adoption premise (zero extra infra)
SSM-AI runs directly on your existing stack.
It requires only symbolic math and a small manifest — no retraining, no new services, and no PII.
Classical numbers remain unchanged via phi((m,a)) = m.
Selection and routing use bounded alignment (a ∈ (-1,+1)) and a chooser
RSI := tanh( (V_out - U_in) / max(W_in, eps_w) ).
Order/shard invariance follows from
U += w*atanh(a) ; W += w ; a_out := tanh( U / max(W, eps_w) ).


N4.2) Savings premise (plug into worksheets)
Use Annual_Savings ≈ S_base * r_save with r_save ∈ [0.10, 0.20].

Typical ranges:

  • Large orgs: $500000–$2000000
  • Mid orgs: $30000–$160000
  • NGO/public: $5000–$40000

Decompose into tokens + tool/API + vendor arbitrage + capacity deferral, all stamped for replay.


N4.3) Acceptance checks (pass/fail)

  • Band parity. Compare vendors only where both meet band_min (e.g., A0).
  • Order/shard invariance. RSI_pool_env computed via (U,W); batch == stream == shard.
  • Apples-to-apples. Same manifest (knobs_hash), prompts, datasets.
  • Unit discipline. All *_pct columns are fractions in [0,1]; avoid mixed % formats.
  • Replayability. Recomputing from (U,W) and manifest must reproduce RSI_pool_env and weekly_savings_usd within dtype tolerance.

N5) Roll-up reducer (reference pseudocode)

def weekly_rollup(rows, eps_w=1e-12):
    # rows: per-decision/session logs with U,W,tokens,lat_ms,retries,cost
    by_key = {}  # (week_start, svc, vendor, knobs_hash) -> accum
    for r in rows:
        k = (r.week_start, r.svc, r.vendor, r.knobs_hash)
        acc = by_key.setdefault(k, {
            "U":0.0,"W":0.0,"tokens":0,"succ":0,
            "lat_ms":[],"retries":0,"cost_tokens":0.0,"g":[]
        })
        acc["U"] += r.U_kpi
        acc["W"] += r.W_kpi
        acc["tokens"] += r.tokens
        acc["succ"]   += r.success
        acc["lat_ms"].append(r.p95_ms)
        acc["retries"] += r.retries
        acc["cost_tokens"] += r.cost_tokens
        acc["g"].append(r.g)

    out = []
    for k,acc in by_key.items():
        U, W = acc["U"], acc["W"]
        RSI_pool = tanh(U / max(W, eps_w)) if W > 0 else 0.0
        g_week   = max(0.0, min(1.0, sum(acc["g"])/max(len(acc["g"]),1))) if acc["g"] else 1.0
        RSI_env  = g_week * RSI_pool
        band     = to_band(RSI_env)
        tps      = acc["tokens"]/max(acc["succ"],1)
        out.append({
            "key": k,
            "RSI_pool_env": RSI_env,
            "band": band,
            "tokens_total": acc["tokens"],
            "tokens_per_success": tps,
            "retry_rate": acc["retries"]/max(acc["succ"],1),
            "cost_per_1k": acc["cost_tokens"]
        })
    return out

Quantiles. Maintain an external quantile sketch (e.g., t-digest) for p95_ms.
SSM-AI itself does not alter latency; it only provides order-invariant symbolic alignment.


Navigation
Previous: SSM-AI – Appendix N — Economics & Rollout Worksheets (N1–N3)
Next: SSM-AI – Appendix N — Economics & Rollout Worksheets (N6–N9)


Directory of Pages
SSM-AI — Table of Contents