Small, decisive experiments → bounded fusion → strict acceptance (values unchanged).
H7) Micro experiments you can run in a day (observation-only)
- Decode bake-off (bounded chooser vs raw entropy).
• 1k prompts × 2 vendors, cues{entropy, margin},c=1,Unit=1,w := 1.
• Rank byRSI_env := g_t * RSI(startg_t = 1).
• Compare top-1 accuracy vs ranking by-entropy.
• Ship:RSI_pool, band histograms, and accuracy lift. - RAG drift guard (MC-dropout + retrieval entropy).
• Penalty lens:e_in := var_mc/Unit + lambda * H_q/Unit.
• Support lens:e_out := citation_hit + semantic_gain.
• Expect fewer low-band selections when drift spikes; stamp all runs. - Conformal set size as penalty.
•e_in := (|S| - 1)/Unit, optional nonconformity term.
• Track A-/A– fractions before/after;phi((m,a)) = mmust hold.
# H7 – experiment skeleton (copy-paste)
# 1) Map cues -> e -> a (or two-channel), then fuse in u-space
a = tanh(c * e) # or a_in := tanh(-c*e_in), a_out := tanh(+c*e_out)
U += w * atanh( clamp(a, -1+eps_a, 1-eps_a) ) # order/shard invariant
W += w
a_pool := tanh( U / max(W, eps_w) )
# 2) Chooser + optional gate
RSI := a_pool
RSI_env := g_t * RSI # "mul" (or tanh(g_t * atanh(RSI)))
band := band_of(RSI_env)
# 3) Stamp
stamp := "SSMCLOCK1|iso_utc|svc=expH7|U={:.6f}|W={:.6f}|RSI={:.6f}|g={:.2f}|RSI_env={:.6f}|band={}|manifest=knobs_hash"
H8) When to prefer which cue (rule-of-thumb table)
scenario primary cue secondary cue
shortlist classification margin or calibrated p entropy (low), conformal size
long-tail classification conformal score/size MC-dropout entropy
RAG answerability retrieval set entropy (H_q) doc citation_hit, MC var
tool success routing calibrated success prob MC var of schema match
regression (numeric) MC var (low) ensemble var (low), EDL strength (high)
# Always map cues via a := tanh(c*e) and decide by RSI or RSI_env (bounded).
H9) Acceptance checklist (must pass)
- Parity: classical values
mnever change (phi((m,a)) = m). - Lens sanity: increasing a penalty lowers
a(or raises|a_in|), increasing support raisesa. - Order/shard invariance: permutations or shard merges yield the same
RSI. - Boundedness: all
a,RSI,RSI_envlie strictly in(-1,+1); bands follow manifest. - Determinism: same manifest + inputs ⇒ same outputs and stamps.
# Quick verifier (copy-paste)
def verify_acceptance(rows, manifest):
eps_a = manifest.get("eps_a", 1e-6); eps_w = manifest.get("eps_w", 1e-12)
def clamp1(x): return max(-1+eps_a, min(1-eps_a, x))
from math import atanh, tanh
# 1) boundedness
assert all(-1 < r["a"] < 1 for r in rows)
# 2) order/shard invariance
def fuse(rows_):
U=W=0.0
for r in rows_:
U += r["w"] * atanh(clamp1(r["a"]))
W += r["w"]
return 0.0 if W<=0 else tanh(U / max(W, eps_w))
assert abs(fuse(rows) - fuse(list(reversed(rows)))) < 1e-12
# 3) determinism (same manifest hash + inputs => same RSI)
return True
One-line takeaway. Run tiny day-one experiments, fuse fairly in u-space, and enforce a strict acceptance checklist—so heterogeneous confidence methods collapse to one bounded, reproducible lane while phi((m,a)) = m keeps classical numbers pristine.
Navigation
Previous: SSM-AI – Appendix H — Comparisons & Synergies (H4–H6)
Next: SSM-AI – Appendix I — Lens Builder (I1–I3)
Directory of Pages
SSM-AI — Table of Contents