Unified lane over popular confidence signals: entropy, margins, MC-dropout, ensembles, conformal, evidential.
H1) Why compare? (positioning in one paragraph)
Different confidence add-ons disagree across tasks and vendors. The SSM-AI lane provides a single bounded coordinate a ∈ (-1,+1) and a single chooser RSI ∈ (-1,+1) so heterogeneous cues reduce to one semantics-stable substrate. Map any cue to a signed contrast e, convert to alignment via a := tanh(c*e) (or two-channel a_out := tanh(+c*e_out), a_in := tanh(-c*e_in)), then fuse order-invariantly in u-space. Classical magnitudes are untouched: phi((m,a)) = m.
# Lane kernel (observation-only)
a_c := clamp(a, -1+eps_a, +1-eps_a)
u := atanh(a_c)
U += w * u
W += w
a_out := tanh( U / max(W, eps_w) )
# Decision chooser (optional two-channel)
RSI := tanh( (V_out - U_in) / max(W_in, eps_w) )
# Optional gate
RSI_env := g * RSI # "mul"
# or
RSI_env := tanh( g * atanh(RSI) ) # "u_scale"
H2) Cheat-sheet — map common methods into a lens (H2.1–H2.4)
H2.1 Softmax entropy (classification)
Low entropy ⇒ support; normalize to dimensionless.
H := -sum_i p_i * log(p_i)
H_max := log(K)
conf_H := 1 - H / H_max
e := (conf_H - tau) / Unit
a := tanh(c * e)
H2.2 Top-two margin (classification)
margin := p_top1 - p_top2 # in [0,1]
e := (margin - tau) / Unit
a := tanh(c * e)
H2.3 Temperature-scaled confidence
p_T := softmax(z / T)
conf_T := max(p_T)
e := (conf_T - tau) / Unit
a := tanh(c * e)
H2.4 MC-dropout predictive variance (regression or logits)
var_mc := mean_t( (y_t - mean_t y_t)^2 )
# Treat variance as penalty (two-channel optional)
e := (s - var_mc) / Unit # or e := -var_mc / Unit
a := tanh(c * e)
# two-channel option:
a_in := tanh( +c * var_mc / Unit )
a_out := tanh( 0 )
Tip. Pick
Unitand gaincso typical|c*e|lies in~[0.3, 1.2](avoids early saturation).
H3) How to fuse them fairly (bounded & order-invariant)
Rules
- Convert each cue →
e→a := tanh(c*e)(or two-channel). - Declare weights:
w := 1(uniform) orw := |m|^gamma(strength-aware). - Fuse only in u-space; never average
adirectly. - Choose by bounded index:
RSI(orRSI_envif gated). - Parity: value path still uses
monly, sophi((m,a)) = mholds.
# Order/shard-invariant fusion
for cue in cues:
a_cue := tanh(c * e_cue) # or two-channel mapping
U += w_cue * atanh( clamp(a_cue, -1+eps_a, 1-eps_a) )
W += w_cue
a_pool := tanh( U / max(W, eps_w) )
# Final chooser (single-lane example)
RSI := a_pool
RSI_env := g * RSI # or tanh(g * atanh(RSI))
band := band_of(RSI_env, thr)
One-line takeaway. Treat diverse confidence signals as lenses into one bounded, u-space fused lane; decide by RSI/RSI_env and keep classical numbers pristine via phi((m,a)) = m.
Navigation
Previous: SSM-AI – Appendix G — SSMH Acceleration Parity (G8–G11)
Next: SSM-AI – Appendix H — Comparisons & Synergies (H4–H6)
Directory of Pages
SSM-AI — Table of Contents