Concise glue code, pass/fail checks, and a manifest snippet you can paste today.
D4) Reference pseudocode (concise, glueable)
def rsi_from_e(e_items, c=1.0, eps_w=1e-12, eps_a=1e-6,
w_policy="uniform", gamma=1.0):
U_in = V_out = W_in = 0.0
for (e_in, e_out, m_or_w) in e_items:
w = (abs(m_or_w)**gamma) if (w_policy=="abs_m_gamma") else 1.0
a_in = tanh(-c*e_in); a_out = tanh(+c*e_out)
U_in += w * atanh(max(-1+eps_a, min(1-eps_a, a_in )))
V_out+= w * atanh(max(-1+eps_a, min(1-eps_a, a_out )))
W_in += w
return 0.0 if W_in <= 0 else tanh((V_out - U_in) / max(W_in, eps_w))
def fuse_init(eps_w=1e-12):
return {"U": 0.0, "W": 0.0, "eps_w": eps_w}
def fuse_add(state, a, w=1.0, eps_a=1e-6):
a_c = max(-1+eps_a, min(1-eps_a, a))
state["U"] += w * atanh(a_c)
state["W"] += w
def fuse_merge(state, other):
state["U"] += other["U"]; state["W"] += other["W"]
def fuse_value(state):
return tanh(state["U"] / max(state["W"], state["eps_w"]))
def gate_apply(RSI, g, mode="mul"):
return (g*RSI) if mode == "mul" else tanh(g*atanh(RSI))
def path_init(eps_a=1e-6, eps_w=1e-12):
return {"U": 0.0, "W": 0.0, "stack": [], "eps_a": eps_a, "eps_w": eps_w}
def path_push(path, RSI_used, w=1.0, beta=0.0, b=0.0):
a_c = max(-1+path["eps_a"], min(1-path["eps_a"], RSI_used))
u_step = atanh(a_c) + beta*b
path["U"] += w * u_step
path["W"] += w
path["stack"].append((w*u_step, w))
def path_pop(path):
if not path["stack"]: return
dU, dW = path["stack"].pop()
path["U"] -= dU; path["W"] -= dW
def path_value(path):
return tanh(path["U"] / max(path["W"], path["eps_w"]))
# Classical numbers stay pristine everywhere: phi((m,a)) = m
D5) Acceptance checklist (must pass)
# Parity
phi((m,a)) = m across all SDK flows
# Clamp discipline
|clamp_align(a)| < 1; never call atanh(±1)
# Order/shard invariance
fuse_value identical under permutations; fuse_merge is associative/commutative on (U,W)
# Bounds
All RSI, RSI_env, RSI_path in (-1,+1); bands map per thresholds
# Gate purity
gate_apply changes alignment only (RSI_env); m is never mutated
# Determinism
Golden vectors reproduce within dtype tolerance; same manifest ⇒ same outputs
# Numeric policy
Prefer float64 internally; dtype-aware eps_a, eps_w; guard means with max(W, eps_w)
# Division policy (lane M2)
Lane mul/div via tanh(atanh(a1) ± atanh(a2)); magnitude math remains classical
D6) Manifest keys (SDK expectations)
{
"eps_a": 1e-6,
"eps_w": 1e-12,
"weights": {"policy": "uniform", "gamma": 1.0}, # or {"policy":"abs_m_gamma","gamma":1.0}
"combine_policy": "M2",
"division_policy": "strict",
"lens": {"Unit": 1.0, "c": 1.0},
"gate": {"mode": "mul", "rho": 0.20, "g_min": 0.00},
"bands": {"A++":0.90, "A+":0.60, "A0":-0.60, "A-":-0.90, "A--":-1.00}
}
One-line takeaway. Glue these three blocks into any stack to lock semantics to clamp → atanh → add in u → divide → tanh with (U,W) fusion — bounded, shard-proof, deterministic — while classical values remain untouched via phi((m,a)) = m.
Navigation
Previous: SSM-AI – Appendix D — Starter SDK & Golden Vectors (D1–D3)
Next: SSM-AI – Appendix E — Vendor Bake-off Protocol (fair, bounded, reproducible)
Directory of Pages
SSM-AI — Table of Contents