2.1 — Connector layer (ports and semantics)
Principle. Every public port consumes and emits pairs x := (m,a) and preserves collapse parity phi((m,a)) = m. Clamp the lane before any combine, and re-clamp on output. Determinism: fixed knobs ⇒ identical outputs.
s_sum({(m_i,a_i)}, {w_i}) -> (m_out, a_out)m_out := sum_i m_iU := sum_i w_i*atanh(clamp(a_i));W := sum_i w_i;a_out := tanh( U / max(W, eps_w) )
Defaults: if{w_i}not supplied, usew_i := |m_i|^gamma(defaultgamma = 1).
Property: order-invariant (batch == stream == shuffled, within epsilon).s_add((m1,a1),(m2,a2))m_out := m1 + m2a_out := tanh( ( w1*atanh(clamp(a1)) + w2*atanh(clamp(a2)) ) / max(w1+w2, eps_w) )
withw1 := |m1|^gamma,w2 := |m2|^gamma.s_sub((m1,a1),(m2,a2))m_out := m1 - m2a_out := tanh( ( w1*atanh(clamp(a1)) + w2*atanh(clamp(-a2)) ) / max(w1+w2, eps_w) )
(Note: subtraction is addition byk = -1, so the second lane flips sign; weights stay|m|^gamma.)s_mul((m1,a1),(m2,a2))m_out := m1*m2a_out := tanh( atanh(clamp(a1)) + atanh(clamp(a2)) )
Closed form:a_out = (a1 + a2) / (1 + a1*a2)(after clamping).s_div((m_f,a_f),(m_g,a_g))m_out := m_f / m_gunder chosen magnitude policy (strict | meadow | soft)a_out := tanh( atanh(clamp(a_f)) - atanh(clamp(a_g)) )
Closed form:a_out = (a_f - a_g) / (1 - a_f*a_g)(after clamping).s_pow((m,a), r)m_out := m^r(domain rule below)a_out := tanh( r*atanh(clamp(a)) )
Domain rule (real outputs): ifm > 0, any realr; ifm = 0, requirer > 0; ifm < 0, require integerr(sign per parity) or reject/emit declared sentinel for the lane while keepingmper policy.s_unary_f((m,a))for monotonefm_out := f(m);S_f(m) := m*f'(m)/f(m)(dimensionless log-slope)a_out := tanh( S_f(m) * atanh(clamp(a)) )
(Requirefmonotone on the operating range andf(m) != 0;S_fmay be negative, flipping the lane.)- Decision ports
s_gt((x1),(x2)),s_eq((x1),(x2))
Emit bounded numeric scores/bands from(m,a); do not modifym.
Example scores (one option):s_gt(x1,x2) := tanh( beta_m*(m1 - m2) + beta_a*(a1 - a2) )s_eq(x1,x2) := 1 - 2*tanh( beta_m*|m1 - m2| + beta_a*|a1 - a2| ) - Alignment-only gate
PORT_gate(a_op, g_t in [0,1]) -> a_enva_env := clamp( g_t * a_op, -1+eps_a, +1-eps_a ); magnitude is untouched.
(Use to apply environment/policy scaling to the lane.)
2.2 — Bus model (two lanes in lockstep)
- M-BUS (magnitude). Classical IEEE-754 magnitudes; legacy arithmetic and pipeline policies apply.
- A-BUS (alignment). Carries bounded
a in (-1,+1). - U-BUS (optional). Carries rapidities
u := atanh(a)for low-latency add/sub/scale. - Lockstep guarantee. For every op, M-BUS and A/U-BUS advance together; collapse parity holds at any boundary (
phi((m,a)) = m).
2.3 — Kernel (three-stage micro-ops, normative)
- Stage 1 — Clamp/Map.
a := clamp(a, -1+eps_a, +1-eps_a);u := atanh(a) - Stage 2 — Compose.
u := u_add / u_suboru := r*u(scalar scale) or streamingU := U + w*u,W := W + w - Stage 3 — Inverse/Bound.
a := tanh(u)ora := tanh( U / max(W, eps_w) ); re-clamp to(-1+eps_a, +1-eps_a)
Navigation
Back: Shunyaya Symbolic Mathematical Hardware – Display & Practical Gains (1.10–1.11)
Next: Shunyaya Symbolic Mathematical Hardware – Silicon, ISA & Timing (2.4–2.7)
Directory of Pages
SSMH – Table of Contents
Explore Further
https://github.com/OMPSHUNYAYA/Symbolic-Mathematical-Hardware
Disclaimer
The contents in the Shunyaya Symbolic Mathematical Hardware (SSMH) materials are research/observation material. They are not engineering advice, not a safety standard or certification, and not operational guidance. Do not use for safety-critical, medical, legal, or financial decisions. Use at your own discretion; no warranties are provided; results depend on correct implementation and inputs.