Shunyaya | Zentrube Formula for Entropy Drift & Symbolic Alignment (Open Research)

Zentrube Formula for Entropy Drift and Symbolic Alignment

Open Research Initiative

Check the White Papers & Code

Read the White Paper (v1.8) →
https://github.com/OMPSHUNYAYA/Entropy-to-Zentrube/releases/tag/v1.8

Browse the GitHub Repository → https://github.com/OMPSHUNYAYA/Entropy-to-Zentrube


Classical Entropy vs Zentrube — Six Proof Points

Classical entropyDistribution snapshot, Unbounded, Not time-aware.
ZentrubeTime-aware via exp(−λt), Compact via log(Var+1), Bounded & Comparable.
  • 🌪 Hurricanes: 20–30% earlier drift vs category thresholds
  • ❤️ ECG: 15–25% earlier anomaly visibility with fewer false positives
  • 🔐 Cybersecurity: earlier DoS onset with clear rupture/recovery polarity
  • 📈 Insurance: ~20–30% tail moderation via entropy-tempered valuation
  • 📡 Telecom: 150–200 ms earlier jitter anticipation
  • Snowfall: drift flagged 7–14 days before major accumulations

All results are observation-only and reproducible from public datasets; see the v1.8 white paper and repo.

What the Zentrube Formula Is (10 Seconds)

Zentrube reframes entropy as readiness—a compact, interpretable number that moves with the system:

  • Time-aware: earlier values fade via exp(−λt)
  • Bounded & comparable: log(Var + 1) keeps scale in check
  • Cross-domain: plug in any signal, compare windows cleanly

Canonical formula (plain text)
Zentrubeₜ = log(Var(x₀:ₜ) + 1) × exp(−λt)

Weighted (multi-input) variation

Zentrubeᵤ = log( Σᵢ[ wᵢ × Var(xᵢ₀:ᵤ) ] + 1 ) × exp(−λu)

Try It Yourself

import numpy as np, math

def zentrube(x, lam=0.02):
# Zentrubeₜ = log(Var(x₀:ₜ) + 1) × exp(−λt)
a = np.asarray(x, float)
a = a[np.isfinite(a)]
t = a.size
return 0.0 if t == 0 else math.log(np.var(a) + 1.0) * math.exp(-lam * t)

print(zentrube([1,2,3,4,5,6], lam=0.02)) # ≈ 1.2109

How to Read the Formula

  • Rising value → instability forming (rupture)
  • Falling value → stabilization (recovery)
  • exp(−λt) gives a practical memory horizon (≈ 1/λ)

Explore further

The Zentrube formula is part of the Shunyaya Framework — an open research effort redefining entropy, drift, and alignment across science, AI, medicine, and climate.


Scope & license
Observation-only research; not an operational prediction system.
© The Authors of Shunyaya Framework and Zentrube Formula
CC BY-NC 4.0.


Explore New Canonical Entropy Formula
ZEOZO-Core
https://github.com/OMPSHUNYAYA/ZEOZO/blob/main/GETTING_STARTED.md
y = m x + c, redefined